Effect of decorin and dermatan sulfate on the mechanical properties of a neocartilage.
نویسندگان
چکیده
Decorin is known to influence the size of collagen fibrils in ligaments and tendons and it has been hypothesized to provide a structural link between collagen fibrils in connective tissues, including cartilage. Coincidently, mechanical properties of skin, ligament, and tendons are altered in decorin knockout mice, suggesting it may influence the structural properties of tissue or tissue matrix organization. To further examine the role of decorin in the extracellular matrix development and subsequent material properties of cartilage, tissue (neocartilage) was grown in a 3D culture model using a pure population of genetically modified chondrocytes stably overexpressing decorin (DCN) or decorin lacking dermatan sulfate (MDCN). An empty vector (CON) served as a virus control. Following generation of the cartilage-like tissues, mechanical properties in tension and compression, collagen fibril diameter, matrix organization, and biochemistry of the tissue were determined. There were no differences between CON and DCN tissues in any parameter measured. In contrast, tissue generated in MDCN cultures was thinner, had higher collagen density, and higher elastic moduli as compared to both CON and DCN tissues. Considering there was no difference in stiffness between CON and DCN tissues, the notion that decorin contributes to the mechanical properties via load transfer was refuted in this model. However, contrasts in the mechanical properties of the MDCN tissue suggest that the dermatan sulfate chains on decorin influences the organization/maturation and resultant mechanical properties of the matrix by as an yet-unidentified regulatory mechanism.
منابع مشابه
Effects of decorin proteoglycan on fibrillogenesis, ultrastructure, and mechanics of type I collagen gels.
The proteoglycan decorin is known to affect both the fibrillogenesis and the resulting ultrastructure of in vitro polymerized collagen gels. However, little is known about its effects on mechanical properties. In this study, 3D collagen gels were polymerized into tensile test specimens in the presence of decorin proteoglycan, decorin core protein, or dermatan sulfate (DS). Collagen fibrillogene...
متن کاملEffect of dermatan sulfate glycosaminoglycans on the quasi-static material properties of the human medial collateral ligament.
The glycosaminoglycan of decorin, dermatan sulfate (DS), has been suggested to contribute to the mechanical properties of soft connective tissues such as ligaments and tendons. This study investigated the mechanical function of DS in human medial collateral ligaments (MCL) using nondestructive shear and tensile material tests performed before and after targeted removal of DS with chondroitinase...
متن کاملModulation of collagen gel contraction by decorin.
The small dermatan sulphate protein decorin interacts via its core protein with fibrillar collagens, and its glycosaminoglycan chains were proposed to be capable of self-association. It was therefore of interest to study the role of decorin in the contraction of cell-populated collagen lattices. Stable transfection of dihydrofolate reductase-deficient CHO cells with decorin cDNA resulted in imp...
متن کاملSequence analysis and domain motifs in the porcine skin decorin glycosaminoglycan chain.
Decorin proteoglycan is comprised of a core protein containing a single O-linked dermatan sulfate/chondroitin sulfate glycosaminoglycan (GAG) chain. Although the sequence of the decorin core protein is determined by the gene encoding its structure, the structure of its GAG chain is determined in the Golgi. The recent application of modern MS to bikunin, a far simpler chondroitin sulfate proteog...
متن کاملDecorin and biglycan of normal and pathologic human corneas.
PURPOSE Corneas with scars and certain chronic pathologic conditions contain highly sulfated dermatan sulfate, but little is known of the core proteins that carry these atypical glycosaminoglycans. In this study the proteoglycan proteins attached to dermatan sulfate in normal and pathologic human corneas were examined to identify primary genes involved in the pathobiology of corneal scarring. ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Connective tissue research
دوره 51 2 شماره
صفحات -
تاریخ انتشار 2010